Detection of multidecadal oceanic variability by ocean data assimilation in the context of a ‘‘perfect’’ coupled model
نویسندگان
چکیده
[1] The impact of oceanic observing systems, external radiative forcings due to greenhouse gas and natural aerosol (GHGNA), and oceanic initial conditions on long time variability of oceanic heat content and salinity is assessed by the assimilation of oceanic ‘‘observations’’ in the context of a ‘‘perfect’’ Intergovernmental Panel on Climate Change Fourth Assessment Report model. According to times and locations at which observations are available, the 20th century expendable bathythermograph (XBT) temperature and 21st century Argo temperature and salinity observations are drawn from a model simulation (set as the ‘‘truth’’) with historical GHGNA radiative forcings. These model observations are assimilated into another coupled model simulation based on temporally varying or fixed year GHGNA values and different oceanic initial conditions. The degree to which the assimilation recovers the truth variability of oceanic heat content and salinity is an assessment of the impact of each factor on the detection of the oceanic ‘‘climate.’’ Results show that both the 20th century XBT and 21st century Argo observations adequately capture the basin-scale variability of heat content. The Argo salinity observations appear to be necessary to reproduce the North Atlantic thermohaline structure and variability. The addition of historical radiative forcings does not make a significant contribution to the detection skill. The initial conditions spun up by historical GHGNA produce better detection skill than the initial conditions spun up by preindustrial fixed year GHGNA due to reduced assimilation shocks. While the 20th century XBT temperature observations alone capture some basic features of salinity variations of the tropical ocean due to the strong T-S relationship from tropical air-sea interactions, the Argo salinity observations are important for global state estimation, particularly in high latitudes where haline effects on ocean density are greater.
منابع مشابه
System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies
A fully coupled data assimilation (CDA) system, consisting of an ensemble filter applied to the Geophysical Fluid Dynamics Laboratory’s global fully coupled climate model (CM2), has been developed to facilitate the detection and prediction of seasonal-to-multidecadal climate variability and climate trends. The assimilation provides a self-consistent, temporally continuous estimate of the couple...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملCan the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?
[1] While the Northern Hemisphere mean surface temperature has clearly warmed over the 20th century due in large part to increasing greenhouse gases, this warming has not been monotonic. The departures from steady warming on multidecadal timescales might be associated in part with radiative forcing, especially solar irradiance, volcanoes, and anthropogenic aerosols. It is also possible that int...
متن کاملApplication of coupled bred vectors to seasonal - to - interannual forecasting and ocean data assimilation
Coupled bred vectors (BVs), generated from the NASA/GMAO coupled general circulation model, are designed to capture the uncertainties related to slowly varying coupled instabilities. Two applications of the BVs are investigated in this study. First, the coupled BVs are used as initial perturbations for ensemble forecasting purposes. Results show that the seasonal-to-interannual variability fore...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کامل